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Abstract. We investigate high frequency price dynamics in foreign exchange market using data from
Reuters information system (the dataset has been provided to us by Olsen and Associates). In our analysis
we show that a näıve approach to the definition of price (for example using the spot mid price) may lead
to wrong conclusions on price behavior as for example the presence of short term correlations for returns.
For this purpose we introduce an algorithm which only uses the non arbitrage principle to estimate real
prices from the spot ones. The new definition leads to returns which are not affected by spurious correla-
tions. Furthermore, any apparent information (defined by using Shannon entropy) contained in the data
disappears.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 65.40.Gr
Entropy and other thermodynamical quantities

1 Introduction

A foreign exchange market is an over the counter (OTC)
market not subject to any time restriction, in fact, it is
open 24 hours a day 7 days a week. Given also that it
is the most liquid market in the world and the availabil-
ity of tick-by-tick quotes, foreign exchange market is very
convenient for the study of high frequency behaviors.

Foreign exchange market is made up of about 2000 fi-
nancial institutions around the globe which operates by
selling or buying certain amount of a given currency. A
market maker (any of the financial institutions which
make the market) is expected to quote simultaneously for
its customers both a bid and a ask price at which it is will-
ing to sell and buy a standard amount of a given currency.
Each of the major market makers shows a running list of
its main bid and ask quotes, and those quotes are dis-
played to all market participants. In principle each quote
from each market maker is valid until a new quote is dis-
played by the same market maker. In practice, this is not
the case and no information is given about the lifetime of
each quote. Many author report a fighting screen effect for
advertising purposes [1–3]: to maintain their name on the
screen some market maker keep sending fake quotes.

In analyzing recorded financial data [4,5], a difficult
and puzzling problem is to define which is the real asset
price [1,3,6]. In principle, three different quotes for the as-
set are available: bid, ask and transaction price (the price
at which the transaction is actually made). Using a wrong
definition for asset price can lead to wrong evaluation of
price dynamics. For example, if the transaction price is
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used to analyze price dynamics a random zero mean os-
cillation around the real price will be found at very short
time scale and this would generate artificial autocorrela-
tions (bid/ask spread effect) [7,8].

We analyze the DEM/USD exchange quotes taken
from Reuters’ EFX pages (the dataset has been provided
to us by Olsen and Associates) during a period of one year
from January to December 1998. In this period 1,620,843
quotes entries in the EFX system were recorded. The
dataset provides a continuously updated sequence of bid
and ask exchange quotation pairs from individual institu-
tions whose names and locations are also recorded. EFX
dataset does not contain any information on traded vol-
ume and on the lifetime of quotes. Furthermore EFX
quotes are indicative and they do not imply that any
amount of currency has been actually traded.

The aim of this work is to find the best definition for
the asset price. We start analyzing raw data assuming
that the asset price is simply given by spot mid quotes.
We find that this leads to an indeterminacy of asset price
at very short time scale and to spurious correlations for
returns. We investigate one possible explanation assuming
that spot quotes contain an estimation error made by the
market maker on the real price. In this way we do not find
the real price but then we introduce an algorithm which,
reducing the spread between bid and ask quotes, is able
to determine the real price and solve the indeterminacy.
We use information theory and a moving average based
analysis to strengthen our results. The key of our work is
that we are able to determine the real price with a pa-
rameter free algorithm which uses only the non-arbitrage
principle.
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2 A näıve approach to the study of FX
microstructure

The aim of this section is to show that a näıve approach
to the analysis of foreign exchange market may lead to
wrong conclusions on price dynamics.

We analyze data taken from EFX Reuters’ informa-
tion system of DEM/USD exchange quotes of the entire
year 1998. In the dataset each pair of bid and ask quotes
as given by the market operators is recorded. The dataset
does not contain information on transaction prices or on
volumes of currencies traded but only tick-by-tick ex-
change quotes. Notice that, nowadays, transaction prices
for FX market are becoming more and more available.

Prices are irregularly time-spaced and we decided, in-
stead of sampling the data in some arbitrarily fixed sam-
pling time, to use business time (basically a tick time)
as our time flow index. In the calendar time framework,
prices are modelled as random processes evolving in or-
dinary time. Clearly, prices in the markets are not fixed
at every t, but only at discrete intervals. Nevertheless,
according to the calendar time picture, prices are usu-
ally considered as discrete samples of an underlying pro-
cess. In the business-time approach, price dynamics is di-
rectly modelled as a discrete-time random process. Indeed,
the time basis is the ordered sequence of times at which
prices are quoted in the markets. Although in this work
we are not forced to make a precise choice we prefer to
use business-time approach because it is simpler to han-
dle and because there are strong indications of being more
fundamental (see [9] and Refs. therein). According to our
choice t takes all integer values up to N which is the num-
ber of quotes in the dataset.

We indicate with S
(b)
t and S

(a)
t respectively bid and

ask quotes at time t. For our analysis we consider mid
price as given by the geometric average of bid and ask

quotes St =
√

S
(a)
t × S

(b)
t [2]. We stress that this choice

for the mid price is not stringent, the same results can be
obtained if bid or ask quotes are used [10].

We define return at two consecutive business time as:

rt ≡ ln
St+1

St
(1)

and, in general, returns at time t and lag τ as

rt(τ) ≡ ln
St+τ

St
· (2)

We estimated using the above cited dataset the τ depen-
dent variance of returns:

〈
r2
t (τ)

〉
, (3)

the non-overlapping first order covariance of two consecu-
tive returns after s lags

〈rt+s(τ)rt(τ)〉 (4)

and the non-overlapping higher order covariances of re-
turns

〈rt+s+α(τ)rt(τ)〉 (5)
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Fig. 1. DEM/USD spot exchange rates: variance (3) (crosses)
compared with a linear fit 2A + Bτ , non-overlapping first or-
der covariance (4) (circles) compared with -A, non-overlapping
higher order covariance (5) (stars) compared with zero. A and
B are identified with 〈ε2t 〉 and 〈r̃2

t 〉.

where α ≥ 1. In the three definitions 〈·〉 indicates an av-
erage over the probability distribution. Results are shown
in Figure 1. The variance of returns is a linear function of
time lags s, as expected, but it is different from zero in the
limit s → 0. This implies the existence of an implicit inde-
terminacy in the price estimation for vanishing time lags.
The same indeterminacy is responsible for the negative
covariance of two consecutive returns (see below) [1].

In order to explain the previous facts, it has been sug-
gested [6,11] that the mid price is the composition of two
different stochastic processes: a real price change and a
noise contribution which is the result of microstructure
frictions and imperfections (we do not enter in details of
the different terms generating the error contribution: for
a better explanation see [1,2]).

Given that St is the mid price at business time t we
can express the two contributions as:

St = S̃te
εt (6)

where S̃t is the real price and εt is the error contribution
to the real price (εt ≡ ln(St/S̃t), r̃t = ln(S̃t+τ/S̃t)). The
relation between returns is then given by:

rt = r̃t − εt + εt+1. (7)

In this framework we can explain the behavior of the
variance and of the other quantities reported in Figure 1.
In fact, with the above definitions, the τ dependent vari-
ance can be calculated analytically:

〈
r2
t (τ)

〉
= 2

〈
ε2t

〉
+

〈
r̃2
t

〉
τ. (8)

Where it has been assumed that εt and r̃t are uncorrelated
random variables. The non-overlapping first order covari-
ance of two consecutive returns after s business time

〈rt+s(τ)rt(τ)〉 = − 〈
ε2t

〉
(9)
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Fig. 2. Covariance 〈rtrt+s〉 and 〈r̃tr̃t+s〉 for spot (squares) and
real (circles) returns.

and the non-overlapping higher order covariances of re-
turns

〈rt+s+α(τ)rt(τ)〉 = 0. (10)

The above picture corresponds exactly to what one can
see in Figure 1. Therefore, it can be estimated the ex-
perimental value for 〈ε2t 〉 which is (2.0 ± 0.2) × 10−8 and
〈r̃2

t 〉 = (0.64± 0.05)× 10−8 for the particular dataset ana-
lyzed. We stress that equations (8) and (9) give two inde-
pendent estimation of the variance allocated in the error
contribution. We find that the two values, computed from
data of Figure 1, coincide within errors.

In order to complete our picture we also estimated the
covariance function on time intervals s, defined as

〈rt+srt〉 (11)

where we considered 〈rt〉 = 0. Results are plotted in Fig-
ure 2. The figure shows that the spot returns are one step
negatively correlated (〈rt+1rt〉 = −〈ε2t 〉) while for s > 1
we have 〈rt+srt〉 � 0 (with respect to the first term) ac-
cording to previous findings [1–3,10,12].

We stress that the correlation we find here is not due
to the bid-ask spread [7,8] given that in our analysis we
are not using transaction prices but mid quotes. Even the
discreteness [13,14] of prices cannot be invoked to explain
the increase of volatility and this because in our dataset
price changes are restricted to less than 1 × 10−4 of the
actual price and this effect, if exist, is very small [1,3,10].

3 A more realistic approach

Different methods already exit in the literature which
try to estimate the real underlying price from the mid
quote [1,2,10]. Those methods are based on a trade-
matching algorithm [10], on the assumption that the mid
quote return is an MA(1) stochastic process [1] or on the

assumption that each market maker quote has a mean life
time (of about 2 minutes) before elapsing. The aim of this
work is to find a possible algorithm which is able to sep-
arate the two contributions in the mid price without any
assumption on the nature of the mid quote return process
and without fixing any arbitrary parameter.

This algorithm should be able to solve the indetermi-
nacy found when the mid price is used to analyze high
frequency price dynamics. From the previous paragraph
we have constraints on the variance allocated in the real
price and in the error distribution, the algorithm should
then take this constraints into account.

In DEM/USD 1998 dataset, each quote at each busi-
ness time is associated with the financial institution which
fixed that quote. In principle this quote should be valid
until the same bank gives a different exchange quote (both
for bid and ask prices). In practice between two different
quotes from the same bank there are several quotes fixed
by other institutions around the world. This suggests that
a bank quote elapses after a certain time even if a new
quote has not been fixed by the same bank. If the dataset
contained information on the time duration of each quote,
or the life time of each quote would be a know constant,
there would be no problem in establishing real price at
each time: it would be the best bid and ask quotes valid
at that time. But this information is not available and a
different strategy has to be found to establish real price
at each time.

The algorithm we propose is the following: let us sup-
pose that we are observing the bid and ask price of a given
currency and that we are able to detect each quotes from
all the financial institution in the business time t.

We define the spread between bid and ask as: Dt =
S

(a)
t − S

(b)
t . Notice that for the non-arbitrage principle

this quantity is greater than or equal to zero. Considering
k time lags previous to business time t we consider the
following effective spread:

Dt,k = S̃
(a)
i − S̃

(b)
i (12)

where S̃
(a)
i = mini∈{t−k,t} S

(a)
i and S̃

(b)
i =

maxi∈{t−k,t} S
(b)
i . For each t our algorithm find k̃

which gives Dt,k̃ ≥ 0 and Dt,k̃+1 < 0. The real price is
then given by

S̃t =
√

S̃
(a)
i × S̃

(b)
i . (13)

In this way we can then define one currency quote at each
time. Notice that the number of steps the algorithm has
to go backwards in time is only given by the non-arbitrage
principle and it is different for every t. We stress that we
do not know the lifetime of each quote and that the non-
arbitrage principle is needed to fix an upper bound on this
life time. It is, in fact, very unlikely that a given quote is
still valid even if it produces arbitrage (except for a very
small number of data) and this is fully supported by the
results presented in the following.

To compare our algorithm with the one proposed in [2]
we compute the average number of steps needed to find
the real price: we find that, on average, about 6 ticks are
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Fig. 3. DEM/USD real exchange rates: variance (3) (crosses)
compared with a linear fit Bτ , non-overlapping first order
covariance (4) (circles) compared with zero, non-overlapping
higher order covariance (5) (stars) compared with zero, B is
identified with 〈r̃2

t 〉.

needed and given that, in the calendar time approach, one
tick in our dataset corresponds on average to 20 seconds
also our algorithm finds an average life time of quotes of
about 2 minutes.

Once we have obtained S̃t we can define r̃t(τ) =
ln(S̃t+τ/S̃t) and compute all quantities (variances and cor-
relations) already computed for the näıve price definition.

As stated above if our algorithm is correct we should
have that the indeterminacy contained in the mid price is
removed for the real price. We then replicate the analysis
described in the first paragraph for the mid price using
the above defined real price S̃t. Results for this analysis
are presented in Figure 3. It can be seen that the variance
of returns goes to zero when business time goes to zero,
in fact the experimental value of

〈
ε2

〉
in equation (8) for

the real price is (0.03 ± 0.01) × 10−8, two order of mag-
nitude smaller than for the mid price. Also the first or-
der non-overlapping covariance of two consecutive returns
goes to zero. Another interesting results is that we obtain
for the real returns variance a value (

〈
r̃2
t

〉
= 0.64 × 10−8)

which is identical, within error, to the one predicted in
equation (8).

If we estimate the covariance of returns as defined in
equation (11), we obtain that the real price returns are
uncorrelated at every step (see Fig. 2 where covariance is
compared with that of ‘näıve returns’ given in Eq. (11)).

We notice that while our algorithm produces returns
which are uncorrelated the trade-matching algorithm pro-
posed in [10] finds a positive first order correlation of the
same magnitude of the negative first order correlation
present in the observed returns. We want also to stress
that while the results from our algorithm and the proce-
dure proposed in [1] are more or less comparable (they
both produce uncorrelated returns), in our approach we

do not need to assume any particular stochastic model for
returns and we do not need to estimate any parameter
from the past quotes.

Indeed, the idea we have used here is very simple, we
assume that old quotes are still valid until they produce
arbitrage. In spite of the simplicity we are able to remove
all artifacts in the data without introducing any free pa-
rameter.

4 Information analysis

To be able to perform information analysis on our dataset
first of all we need to code the original data in a sequence
of symbols [15]. There are several way to build up such a
sequence: one should make sure that this treatment does
not change too much the structure of the process under-
lying the evolution of financial data. A partition process
of the range of variability of the data is needed in order to
assign a conventional symbol to each element of the par-
tition. A symbol corresponds then unambiguously to each
element of the partition. The procedure described below
permits to code financial data in a sequence of binary
symbols from which is then possible to quantify available
information.

We fix a resolution value ∆ and define

rti(τ) ≡ ln
Sti+τ

Sti

(14)

where ti is a given business time. We wait until an exit
time τi such as

|rti(τi)| ≥ ∆. (15)

In this way we only consider market fluctuations of am-
plitude ∆. We can build up a sequence of rti(τi), where
t1 = t0 + τ0 and ti+1 = ti + τi, then we code this sequence
in a binary code according to the following rules:

ck =





−1 if rti(τi) < 0

+1 if rti(τi) > 0
. (16)

The procedure described above corresponds to a patient
investor who waits to update his investing strategy until
a certain behavior of the market is achieved, for example,
a fluctuation of size ∆.

Once we have build a symbolic sequence we can esti-
mate the entropy which is defined, for a generic sequence
of n symbols, as:

Hn = −
∑
Cn

p(Cn) ln p(Cn) (17)

where Cn = {c1 . . . cn} is a sequence of n objects and
p(Cn) its probability. The difference

hn ≡ Hn+1 − Hn (18)

represents the average information needed to specify the
symbol cn+1 given the previous knowledge of the sequence
{c1 . . . cn}.
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Fig. 4. Information for spot (squares) and real (circles) prices.

The series hn is monotonically not increasing and for
an ergodic process one has

h = lim
n→∞hn (19)

where h is the Shannon entropy [16]. It can be shown
that if the stochastic process {c1 . . . cn} is Markovian of
order k (i.e. the probability of having cn at time n depends
only on previous k steps n − 1, n − 2, . . . , n − k), then
hn = h for n ≥ k. In other cases either hn goes to zero
for increasing n, which means that for n sufficiently large
the (n + 1)th-symbol is predictable knowing the sequence
Cn, or it tends to a positive finite value. The maximum
value of h is ln(2) for a dichotomic sequence. It occurs if
the process has no memory at all and the 2 symbols have
the same probability. The difference between ln(2) and h
is intuitively the quantity of information we may use to
predict the next result of the phenomenon we observe, i.e.
the market behavior.

In Figure 4 hn is estimated both for real (S̃t) and mid
prices (St). From the results it is obvious the different be-
haviors of the two definition for currency price. In fact,
while for the mid price we find a non zero available infor-
mation (ln 2−hn �= 0), the stochastic process is a Markov
process of order 1, the real price does not show this be-
havior. The available information for the real price is zero
and it remains zero at every step (due to the finite num-
ber of data we can only estimate hn until n � 9 but we
can extrapolate its behavior for n → ∞). This show that
the real price (unfortunately) is a stochastic process with
no memory and predictability at least at the frequency at
which the analysis has been performed.

5 Moving average and price forecasting

As seen in the previous section, the Shannon information,
which seemed to be available in the näıve approach, van-
ishes when the dataset is pre-processed using our algo-
rithm. The information carried by the näıve data could
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Fig. 5. Covariances between returns rt and φt(τ ), defined in
equation (21), as a function of lags window τ for spot (dots-
line) and real (dashed line) prices.

be used to predict future prices and gain money from this.
We will use a quantity, the moving average, which is one of
the most popular analysis tools widely used both in finan-
cial literature and from market traders [17–19], to show
that this prediction power is only apparent and vanishes
when our algorithm is used to define real prices.

The lag dependent moving average is defined as:

St(τ) =
1
τ

τ−1∑
i=0

St−i (20)

where St can be the real or the mid price. The lags window
τ can be varied in order to consider the influence of prices
far back in time. Once the moving average is estimated we
can define the following quantity

φt(τ) = ln
St

St(τ)
(21)

which measures the relative position of the quote St with
respect to its moving average. One would like to know if
the knowledge of φt(τ) can give some information about
the successive evolution of prices, i.e. if this knowledge
is useful to make a better probabilistic prediction about
next returns. For this reason we compute the covariance
between this quantity and returns

χ(τ) = 〈rtφt(τ)〉 (22)

where again 〈·〉 is an average over the entire dataset. Re-
sults for real and mid price are presented in Figure 5.
Once again it is evident that while the real price defined
here satisfies the efficient market hypothesis this does not
hold true for the mid price which is negatively correlated
with the moving average. This negative correlation be-
tween returns and moving average allows forecast of the
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next coming price. In fact the evolution of mid price is
such to reduce the distance between the mid price and
the average [20].

6 Conclusions

The aim of this work is to find the exact way to ex-
tract real prices from quotes taken form Reuters’ Informa-
tion system. Our dataset contains 1,620,843 bid and ask
DEM/USD quotes recorded during the entire year 1998,
from the 1st of January until the 31st of December 1998.

In Section 2 we review the results that show that a
wrong behavior of price dynamics can be obtained when
the raw dataset is näıvely processed. In fact, one finds
an implicit indeterminacy in price specification which in-
creases the volatility and produces spurious covariances.
Following [6] we then explain this indeterminacy by means
of an error contribution which is responsible for the in-
creased volatility and for the covariances.

At this point we introduce a parameter free algorithm,
only based on the non arbitrage principle, which is able
to extract the real prices from the spot ones. The correct-
ness of the procedure is corroborated by the many results
presented in this work. First of all we show that with the
new price definition the indeterminacy and the one step
anti-correlation drop to zero. We also show, through in-
formation analysis, that the stochastic process for the new
defined price has no short range memory.

Given our results we think that when studying price
dynamics a strong attention has to be posed on the defi-
nition of prices to be used in the analysis in order to avoid
wrong conclusions as, for example, the existence of short
term return correlations.

We stress that we are able to define real prices directly
from spot quotes without the need of further information
(like for example time of validity of quotes [2] or the esti-
mation of parameters from past quotes [1]).

In conclusion we would like to propose our method as
a general tool to process raw high frequency dataset in
order to obtain a new dataset of the same length whose
data are a better representation of price evolution in the
very short time scale.

We thank Michele Pasquini for illuminating discussions in the
early stage of the present work and for continuous interest and
suggestions. F.P. acknowledges the financial support of Cofin
MIUR 2002 prot. 2002027798 005.
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